Discrete Choice Models for Nonmonotone Nonignorable Missing Data: Identification and Inference

نویسندگان

  • Eric J. Tchetgen Tchetgen
  • Linbo Wang
  • BaoLuo Sun
چکیده

Nonmonotone missing data arise routinely in empirical studies of social and health sciences, and when ignored, can induce selection bias and loss of efficiency. In practice, it is common to account for nonresponse under a missing-at-random assumption which although convenient, is rarely appropriate when nonresponse is nonmonotone. Likelihood and Bayesian missing data methodologies often require specification of a parametric model for the full data law, thus a priori ruling out any prospect for semiparametric inference. In this paper, we propose an all-purpose approach which delivers semiparametric inferences when missing data are nonmonotone and not at random. The approach is based on a discrete choice model (DCM) as a means to generate a large class of nonmonotone nonresponse mechanisms that are nonignorable. Sufficient conditions for nonparametric identification are given, and a general framework for fully parametric and semiparametric inference under an arbitrary DCM is proposed. Special consideration is given to the case of logit discrete choice nonresponse model (LDCM) for which we describe generalizations of inverse-probability weighting, pattern-mixture estimation, doubly robust estimation and multiply robust estimation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Likelihood-based Inference with Nonignorable Missing Responses and Covariates in Models for Discrete Longitudinal Data

We propose methods for estimating parameters in two types of models for discrete longitudinal data in the presence of nonignorable missing responses and covariates. We first present the generalized linear model with random effects, also known as the generalized linear mixed model. We specify a missing data mechanism and a missing covariate distribution and incorporate them into the complete dat...

متن کامل

Commonalities and differences in IRT-based methods for nonignorable item nonresponses

Missing responses resulting from omitted or not-reached items are beyond researchers’ control and potentially threaten the validity of test results. Empirical evidence concerning the relationship between missingness and test takers’ performance on the test have suggested that the missing data mechanism is nonignorable and needs to be taken into account. Various IRT-based models for nonignorable...

متن کامل

Pattern Mixture Models for Quantifying Missing Data Uncertainty in Longitudinal Invariance Testing

Many psychology applications assess measurement invariance of a construct (e.g., depression) over time. These applications are often characterized by few time points (e.g., 3), but high rates of dropout. Although such applications routinely assume that the dropout mechanism is ignorable, this assumption may not always be reasonable. In the presence of nonignorable dropout, fitting a conventiona...

متن کامل

Empirical likelihood inference in linear regression with nonignorable missing response

Parameter estimation for nonignorable nonresponse data is a challenging issue as the missing mechanism is unverified in practice and the parameters of response probabilities need to be estimated. This article aims at applying the empirical likelihood to construct the confidence intervals for the parameters of interest in linear regression models with nonignorable missing response data and the n...

متن کامل

Discrete choice nonresponse

Missing values are endemic in the data sets available to econometricians. This paper suggests a unified likelihood-based approach to deal with several nonignorable missing data problems for discrete choice models. Our concern is when either the dependent variable is unobserved or situations when both dependent variable and covariates are missing for some sampling units. These cases are also con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017